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Abstract: This paper establishes a new condition for a specific family of symmetric matrices 
to be simultaneously diagonalizable via congruence. The paper considers a structured family 
of symmetric matrices satisfying a particular rank condition, which ensures the existence of 
a nonsingular congruence transformation that simultaneously diagonalizes all the initial 
matrices. Explicit examples are provided to illustrate the sharpness of our condition. 

Keywords:  constrained optimization, matrix transformations, quadratic forms, 
simultaneous diagonalization via congruence, symmetric matrices

1. INTRODUCTION
In matrix theory, the problem of 

simultaneous diagonalization is a crucial topic 
with numerous applications in optimization, 
control systems, and numerical linear 
algebra. When considering a set of matrices, 
we are often interested in simplifying them 
through linear transformations. Two common 
methods are simultaneous diagonalization 
via similarity (SDS) and simultaneous 
diagonalization via congruence (SDC).

Definition 1.1. The square matrices A1, 
A2, . . . , Am are said to be simultaneously 
diagonalizable via similarity (SDS) if there 
exists an invertible matrix P such that each 
transformed matrix

P-1AiP, i = 1, 2, . . . , m,
is diagonal, where P-1 denotes the inverse 

of P.
Definition 1.2. The square matrices A1, 

A2, . . . , Am are said to be simultaneously 
diagonalizable via congruence (SDC) if 
there exists an invertible matrix P such that 
each transformed matrix

P ∗AiP, i = 1, 2, . . . , m,
is diagonal, where P∗ denotes the 

conjugate transpose of P.

Among these, simultaneous 
diagonalization via congruence of matrices 

is particularly useful when dealing with 
symmetric matrices, quadratic forms, 
and quadratically constrained quadratic 
programming (QCQP).

The problem of simultaneous 
diagonalization of matrices has been 
extensively studied for decades, with 
significant contributions from Au-Yeung 
(1970), Uhlig (1973), Greub (1975), Uhlig 
(1976), Becker (1980), and many others. 
However, most existing results primarily 
focus on necessary and sufficient conditions 
for two matrices to be simultaneously 
diagonalizable.

The problem of determining necessary 
and sufficient conditions for a family of 
m square matrices of the same order to 
be simultaneously diagonalizable via 
congruence was listed among the open 
problems proposed by Hiriart-Urruty 
and Torki (2002), later included in 
HiriartUrruty (2007).

After that, Jiang and Li (2016) provided 
the necessary and sufficient conditions 
for two matrices to be simultaneously 
diagonalizable via congruence. They 
also established necessary and sufficient 
conditions for a finite family of matrices 
to be simultaneously diagonalizable under 
the assumption that there exists a positive 
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semidefinite linear combination of them, 
i.e., there exist scalars λ1, λ2, . . . , λm such 
that λ1A1+λ2A2+· · ·+λmAm is a positive 
semidefinite matrix.

More recently, Le Thanh Hieu and 
Nguyen Thi Ngan (2022) and Nguyen Thi 
Ngan (2024) have provided a comprehensive 
study of the SDC problem, addressing 
both theoretical aspects and computational 
applications.

Although SDC has been widely explored 
in fields such as differential geometry, control 
theory, optimization, etc. the characterization 
of a family of symmetric matrices that 
can be simultaneously diagonalized 

via congruence remains a fundamental 
problem. The key question is: Under what 
conditions can a family of symmetric 
matrices be simultaneously diagonalized by 
a congruence transformation? 

This paper investigates a specific case of 
a family of symmetric matrices satisfying 
this condition and analyzes its fundamental 
properties.

2. MAIN RESULTS

Lemma 2.1. Two symmetric matrices A 
and B are simultaneously diagonalizable 
via similarity if and only if they commute 
with each other (Horn and Johnson, 2013).

Theorem 2.2. If A and B are of the following form
Theorem 2.2. If A and B are of the following form

A =



A1 0 · · · 0

0 A2 · · · 0
...

... . . . ...

0 0 · · · Am


, B =

  


B1 0 · · · 0

0 B2 · · · 0
...

... . . . ...

0 0 · · · Bm




, 1≤m≤ n,

where

• Ak, 1≤ k≤m, are symmetric matrices with diagonal elements equal to each other and

equal to ak.

• Bk= bkI+ tk(Ak− akI) are symmetric, tk∈ R \ {0}.

Then A and B are SDS.

Proof. According to Corollary 2.1, we need to prove that if the matrices A and B have a block

diagonal form with blocks Ak and Bk satisfying the given conditions, then AB = BA.

AB =



A1B1 0 · · · 0

0 A2B2 · · · 0
...

... . . . ...

0 0 · · · AmBm


, BA =



B1A1 0 · · · 0

0 B2A2 · · · 0
...

... . . . ...

0 0 · · · BmAm

   


.

Thus, the problem reduces to proving AkBk = BkAk for every k.

Substituting the expressions for Ak = akI + A′
k and Bk = bkI + tkA

′
k. We obtain:

AkBk = (akI + A′
k)(bkI + tkA

′
k) = akbkI + tkakA

′
k + bkA

′
k + tkA

′2
k,

BkAk = (bkI + tkA
′
k)(akI + A′

k) = akbkI + bkA
′
k + tkakA

′
k + tkA

′2
k.

Since AkBk = BkAk for all k, it follows that AB = BA.

Le and Nguyen (2022) provided a counterexample showing that the

commutativity condition is only sufficient, not necessary, for a family of Hermitian matrices to

be simultaneously diagonalizable via congruence. Therefore, we proceed to compute the

following specific cases.

3
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Thus, the problem reduces to proving AkBk = BkAk for every k. 
Substituting the expressions for Ak = akI + A′k and Bk = bkI + tkA′k. We obtain:

AkBk = (akI + A′k)(bkI + tkA′k) = akbkI + tkakA′k + bkA′k + tkA′2k,

BkAk = (bkI + tkA′k)(akI + A′k) = akbkI + bkA′k + tkakA′k + tkA′2 k.

Since AkBk = BkAk for all k, it follows that AB = BA.

Le Thanh Hieu and Nguyen Thi Ngan (2022) provided a counterexample showing that 
the commutativity condition is only sufficient, not necessary, for a family of Hermitian 
matrices to be simultaneously diagonalizable via congruence. Therefore, we proceed to 
compute the following specific cases. 

a c

c a



 and B =

kc b

According to Theorem 2.2, with n = 2, two matrices A

 

 b kc are SDS by a nonsingular matrix P and SDC by a unitary matrix U .

Proof. Consider matrix P =



x′ y′

z′ t′



 such that

P−1AP =





at′x′ − cx′y′ + ct′z′ − ay′z′

t′x′ − y′z′
ct′2 − cy′2

t′x′ − y′z′

cx′2 − cz′2

t′x′ − y′z′
at′x′ + cx′y′ − ct′z′ − ay′z′

t′x′ − y′z′



 ,

P−1BP =





bt′x′ − ckx′y′ + ckt′z′ − by′z′

t′x′ − y′z′
ckt′2 − cky′2

t′x′ − y′z′

ckx′2 − ckz′2

t′x′ − y′z′
bt′x′ + ckx′y′ − ckt′z′ − by′z′

t′x′ − y′z′





are diagonal. That is 




x′2 − z′2 = 0

t′2 − y′2 = 0

.

We have



x y

x y



,



 x y

−x y



,



x y

x −y



,



 x y

−x −y



. However, since det(P ) �= 0, we

exclude the two cases



x y

x y



 and



 x y

−x −y



.

Consider matrix U =



x y

z t



 such that

U∗AU =



axx̄+ cxz̄ + czx̄+ azz̄ ayx̄+ cyz̄ + ctx̄+ atz̄

axȳ + cxt̄+ czȳ + azt̄ ayȳ + cyt̄+ ctȳ + att̄



 ,

U∗BU =



bxx̄+ kcxz̄ + kczx̄+ bzz̄ byx̄+ kcyz̄ + kctx̄+ btz̄

bxȳ + kcxt̄+ kczȳ + bzt̄ byȳ + kcyt̄+ kctȳ + btt̄





4
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are diagonal. That is



a c

c a



 and B =

kc b

According to Theorem 2.2, with n = 2, two matrices A

 

 b kc are SDS by a nonsingular matrix P and SDC by a unitary matrix U .

Proof. Consider matrix P =



x′ y′

z′ t′



 such that

P−1AP =





at′x′ − cx′y′ + ct′z′ − ay′z′

t′x′ − y′z′
ct′2 − cy′2

t′x′ − y′z′

cx′2 − cz′2

t′x′ − y′z′
at′x′ + cx′y′ − ct′z′ − ay′z′

t′x′ − y′z′



 ,

P−1BP =





bt′x′ − ckx′y′ + ckt′z′ − by′z′

t′x′ − y′z′
ckt′2 − cky′2

t′x′ − y′z′

ckx′2 − ckz′2

t′x′ − y′z′
bt′x′ + ckx′y′ − ckt′z′ − by′z′

t′x′ − y′z′





are diagonal. That is 




x′2 − z′2 = 0

t′2 − y′2 = 0

.

We have



x y

x y



,



 x y

−x y



,



x y

x −y



,



 x y

−x −y



. However, since det(P ) �= 0, we

exclude the two cases



x y

x y



 and



 x y

−x −y



.

Consider matrix U =



x y

z t



 such that

U∗AU =



axx̄+ cxz̄ + czx̄+ azz̄ ayx̄+ cyz̄ + ctx̄+ atz̄

axȳ + cxt̄+ czȳ + azt̄ ayȳ + cyt̄+ ctȳ + att̄



 ,

U∗BU =



bxx̄+ kcxz̄ + kczx̄+ bzz̄ byx̄+ kcyz̄ + kctx̄+ btz̄

bxȳ + kcxt̄+ kczȳ + bzt̄ byȳ + kcyt̄+ kctȳ + btt̄





4

are diagonal. That is 




ayx̄+ cyz̄ + ctx̄+ atz̄ = 0

axȳ + cxt̄+ czȳ + azt̄ = 0

byx̄+ kcyz̄ + kctx̄+ btz̄ = 0

bxȳ + kcxt̄+ kczȳ + bzt̄ = 0

.

Through direct computation, we obtain



 x y

−x y



 or



x y

x −y



. Since U is a unitary matrix,

U∗ = U−1. Then, x, y are complex numbers lying on the circle centered at O with radius
1√
2

.

Theorem 2.4. Given two matrices A and B of the form described in Theorem 2.2, where each

Ak, ∀k = 1, . . . , m is a matrix of order at most 2, then A and B are SDC by a unitary matrix.

Proof. The proof is based on the result of Lemma 2.3.

Example 2.1. Find a unitary matrix that simultaneously diagonalizes two matrices A =





1 2 0

2 1 0

0 0 3





and B =





4 6 0

6 4 0

0 0 7



 via congruence. Suppose that U =





x y z

t u v

a b c



 is the desired matrix.

Then U satisfies

U∗AU =





xx̄+ 2tx̄+ 2xt̄+ tt̄+ 3aā yx̄+ 2ux̄+ 2yt̄+ ut̄+ 3bā zx̄+ 2vx̄+ 2zt̄+ vt̄+ 3cā

xȳ + 2tȳ + 2xū+ tū+ 3ab̄ yȳ + 2uȳ + 2yū+ uū+ 3bb̄ zȳ + 2vȳ + 2zū+ vū+ 3cb̄

xz̄ + 2tz̄ + 2xv̄ + tv̄ + 3ac̄ yz̄ + 2uz̄ + 2yv̄ + uv̄ + 3bc̄ zz̄ + 2vz̄ + 2zv̄ + vv̄ + 3cc̄





U∗BU =





4xx̄+ 6tx̄+ 6xt̄+ 4tt̄+ 7aā 4yx̄+ 6ux̄+ 6yt̄+ 4ut̄+ 7bā 4zx̄+ 6vx̄+ 6zt̄+ 4vt̄+ 7cā

4xȳ + 6tȳ + 6xū+ 4tū+ 7ab̄ 4yȳ + 6uȳ + 6yū+ 4uū+ 7bb̄ 4zȳ + 6vȳ + 6zū+ 4vū+ 7cb̄

4xz̄ + 6tz̄ + 6xv̄ + 4tv̄ + 7ac̄ 4yz̄ + 6uz̄ + 6yv̄ + 4uv̄ + 7bc̄ 4zz̄ + 6vz̄ + 6zv̄ + 4vv̄ + 7cc̄





are diagonal. Solve a system of 12 equations, where all elements outside the main diagonal of

the two matrices U ∗AU and U∗BU are equal to 0, and thus obtain the matrix U in the form
5
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are diagonal. Solve a system of 12 equations, where all elements outside the main diagonal 
of the two matrices U*AU and U*BU are equal to 0, and thus obtain the matrix U in the 
form

                                          . For U to be a unitary matrix, U satisfies  U* = U -1

 

are diagonal. That is 




ayx̄+ cyz̄ + ctx̄+ atz̄ = 0

axȳ + cxt̄+ czȳ + azt̄ = 0

byx̄+ kcyz̄ + kctx̄+ btz̄ = 0

bxȳ + kcxt̄+ kczȳ + bzt̄ = 0

.

Through direct computation, we obtain



 x y

−x y



 or



x y

x −y



. Since U is a unitary matrix,

U∗ = U−1. Then, x, y are complex numbers lying on the circle centered at O with radius
1√
2

.

Theorem 2.4. Given two matrices A and B of the form described in Theorem 2.2, where each

Ak, ∀k = 1, . . . , m is a matrix of order at most 2, then A and B are SDC by a unitary matrix.

Proof. The proof is based on the result of Lemma 2.3.

Example 2.1. Find a unitary matrix that simultaneously diagonalizes two matrices A =





1 2 0

2 1 0

0 0 3





and B =





4 6 0

6 4 0

0 0 7



 via congruence. Suppose that U =





x y z

t u v

a b c



 is the desired matrix.

Then U satisfies

U∗AU =





xx̄+ 2tx̄+ 2xt̄+ tt̄+ 3aā yx̄+ 2ux̄+ 2yt̄+ ut̄+ 3bā zx̄+ 2vx̄+ 2zt̄+ vt̄+ 3cā

xȳ + 2tȳ + 2xū+ tū+ 3ab̄ yȳ + 2uȳ + 2yū+ uū+ 3bb̄ zȳ + 2vȳ + 2zū+ vū+ 3cb̄

xz̄ + 2tz̄ + 2xv̄ + tv̄ + 3ac̄ yz̄ + 2uz̄ + 2yv̄ + uv̄ + 3bc̄ zz̄ + 2vz̄ + 2zv̄ + vv̄ + 3cc̄





U∗BU =





4xx̄+ 6tx̄+ 6xt̄+ 4tt̄+ 7aā 4yx̄+ 6ux̄+ 6yt̄+ 4ut̄+ 7bā 4zx̄+ 6vx̄+ 6zt̄+ 4vt̄+ 7cā

4xȳ + 6tȳ + 6xū+ 4tū+ 7ab̄ 4yȳ + 6uȳ + 6yū+ 4uū+ 7bb̄ 4zȳ + 6vȳ + 6zū+ 4vū+ 7cb̄

4xz̄ + 6tz̄ + 6xv̄ + 4tv̄ + 7ac̄ 4yz̄ + 6uz̄ + 6yv̄ + 4uv̄ + 7bc̄ 4zz̄ + 6vz̄ + 6zv̄ + 4vv̄ + 7cc̄





are diagonal. Solve a system of 12 equations, where all elements outside the main diagonal of

the two matrices U∗AU and U∗BU are equal to 0, and thus obtain the matrix U in the form
5





x y 0

−x y 0

0 0 c



. For U to be a unitary matrix, U satisfies U∗ = U−1

⇔





x̄ −x̄ 0

ȳ ȳ 0

0 0 c̄



 =





1

2x
− 1

2x
0

1

2y

1

2y
0

0 0
1

c




.

In this case, x and y are complex numbers lying on the circle centered at O with radius
1√
2

, and

c is a complex number lying on the circle centered at O with radius 1, then U simultaneously

diagonalizes A and B via congruence. Specifically

U∗AU = diag(−2xx̄, 6yȳ, 3c2), U∗BU = diag(−4xx̄, 20yȳ, 7c2).

Corollary 2.5. Given two atrices A, Bas described n theorem 2.4, f there exists 1 ≤k≤m

such that tk = tk+1 and tkak + bk+1 = tkak+1 + bk then

M =





A1 · · · 0 0 · · · 0
... . . . ...

... · · · ...

0 · · · Ak K · · · 0

0 · · · KT Ak+1 · · · 0
... · · · · · · · · · . . . ...

0 · · · 0 0 · · · Am





, N =





B1 · · · 0 0 · · · 0
... . . . ...

... · · · ...

0 · · · Bk tkK · · · 0

0 · · · tkK
T Bk+1 · · · 0

... · · · · · · · · · . . . ...

0 · · · 0 0 · · · m





are SDS, where K is a matrix with the number of rows equal to the order of matrix Ak and the

number of columns equal to the order of matrix Ak+1.

Proof. For blocks outside the rows and columns associated with k and k + 1, the matrices M

and N remain block diagonal. We compute their products in the relevant positions.

• The block (k, k)

(MN)k,k = AkBk + tkKKT ,

(NM)k,k = BkAk + tkKKT .

6





x y 0

−x y 0

0 0 c



. For U to be a unitary matrix, U satisfies U∗ = U−1

⇔





x̄ −x̄ 0

ȳ ȳ 0

0 0 c̄



 =





1

2x
− 1

2x
0

1

2y

1

2y
0

0 0
1

c




.

In this case, x and y are complex numbers lying on the circle centered at O with radius
1√
2

, and

c is a complex number lying on the circle centered at O with radius 1, then U simultaneously

diagonalizes A and B via congruence. Specifically

U∗AU = diag(−2xx̄, 6yȳ, 3c2), U∗BU = diag(−4xx̄, 20yȳ, 7c2).

Corollary 2.5. Given two atrices A, Bas described n theorem 2.4, f there exists 1 ≤k≤m

such that tk = tk+1 and tkak + bk+1 = tkak+1 + bk then

M =





A1 · · · 0 0 · · · 0
... . . . ...

... · · · ...

0 · · · Ak K · · · 0

0 · · · KT Ak+1 · · · 0
... · · · · · · · · · . . . ...

0 · · · 0 0 · · · Am





, N =





B1 · · · 0 0 · · · 0
... . . . ...

... · · · ...

0 · · · Bk tkK · · · 0

0 · · · tkK
T Bk+1 · · · 0

... · · · · · · · · · . . . ...

0 · · · 0 0 · · · m





are SDS, where K is a matrix with the number of rows equal to the order of matrix Ak and the

number of columns equal to the order of matrix Ak+1.

Proof. For blocks outside the rows and columns associated with k and k + 1, the matrices M

and N remain block diagonal. We compute their products in the relevant positions.

• The block (k, k)

(MN)k,k = AkBk + tkKKT ,

(NM)k,k = BkAk + tkKKT .

6

are SDS, where K is a matrix with the number of rows equal to the order of matrix Ak and 
the number of columns equal to the order of matrix Ak+1.
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Proof. For blocks outside the rows and columns associated with k and k + 1, the matrices M 
and N remain block diagonal. We compute their products in the relevant positions.

• The block (k, k)

(MN)k,k = AkBk + tkKKT ,

(NM)k,k = BkAk + tkKKT.

Using the result AkBk = BkAk in the proof of Theorem 2.2, we obtain:

AkBk + KtkK
T = BkAk + tkKKT.

Since multiplication is associative, the terms involving K remain unchanged, so the 
expressions are equal. Similar to the block (k + 1, k + 1).

• The block (k, k + 1)

(MN)k,k+1 = tkAkK + KBk+1,

(NM)k,k+1 = BkK + tkKAk+1.

Using the assumptions tkak + bk+1 = tkak+1 + bk, we see that:

tk(AkK) + KBk+1 = BkK + tkKAk+1.

Since Bk = bkI + tkA′k and Bk+1 = bk+1I + tkA′k+1, the assumption ensures that both 
expressions are equal.

• The block (k + 1, k)

(MN)k+1,k = KTAk + tkAk+1K
T,

(NM)k+1,k = tkK
TAk + Bk+1K

T.

Again, substituting the condition tkak + 
bk+1 = tkak+1 + bk, we get both expressions are 
equal.

Since all relevant blocks satisfy (MN)ij 
= (NM)ij, it follows that MN = NM. Hence, 
M and N are SDS.

The above results provide a specific 
condition for block diagonal matrices to 
be SDS and SDC. Moreover, we extended 
previous results by considering cases where 
off-diagonal block structures are introduced 
while preserving commutativity under 
congruence transformations.

Some questions remain open for further 
exploration:

• Generalization to Hermitian matrices: 
Can similar results be obtained for 
Hermitian matrices? What conditions 

would be necessary for simultaneous 
diagonalization in this case?

• Applications in Optimization: How can 
the established SDC conditions be applied 
to quadratically constrained quadratic 
programming (QCQP)? (Anstreicher, 2012)

• The current results focus on block 
diagonal matrices with symmetric 
submatrices. How would the conditions 
change if we consider more complex blocks?

• How do these results relate to other 
decomposition techniques, such as the Schur 
decomposition or Jordan decomposition? 
(Stewart, 1985)

3. CONCLUSION

In this paper, we have investigated 
the conditions under which a family 
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of symmetric block diagonal matrices 
can be simultaneously diagonalized 
via congruence. We provided sufficient 
conditions for symmetric block matrices 
to be simultaneously diagonalizable via 
congruence, focusing on cases where each 
block is of size at most 2 (Theorem 2.4). 
These conditions are built upon a specific 
relation between sub-blocks, ensuring that 
the matrices commute under congruence 
(Theorem 2.2). Additionally, we extended 
these conditions to accommodate matrices 
with additional off-diagonal blocks, while 
still preserving SDS through commutativity 
(Corollary 2.5). 

The findings presented here provide 
a modest contribution to the broader 
understanding of simultaneous 
diagonalization and open potential 
directions for further research in matrix 
theory, optimization, and numerical linear 
algebra. While the results are preliminary, 
they suggest possible avenues for extending 
SDC to more general matrix classes 
and improving algorithmic efficiency. 
We hope that these observations will 
inspire additional studies on congruence 
transformations and their applications in 
solving mathematical problems in practical 
contexts.
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MỘT TRƯỜNG HỢP CỤ THỂ CỦA MỘT HỌ MA TRẬN ĐỐI XỨNG 
CHÉO HÓA TƯƠNG ĐẲNG ĐỒNG THỜI ĐƯỢC

Võ Đức Tư Duy
Phòng Quản lý Khoa học và Hợp tác Quốc tế, Trường Đại học Phan Thiết, Việt Nam

Tóm tắt: Bài báo này thiết lập một điều kiện mới cho một trường hợp cụ thể của một họ 
ma trận đối xứng chéo hóa tương đẳng đồng thời được. Chúng tôi xét một họ ma trận đối 
xứng có cấu trúc thỏa mãn một điều kiện đặc biệt, đảm bảo sự tồn tại của một ma trận khả 
nghịch làm chéo hóa đồng thời tất cả các ma trận trên. Các ví dụ cụ thể được đưa ra nhằm 
minh họa tính chặt chẽ của điều kiện này.

Từ khóa: chéo hóa tương đẳng đồng thời, dạng toàn phương, ma trận đối xứng, phép biến 
đổi ma trận, ràng buộc toàn phương
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