Density Functional Theory Study of Geometrical and Electron Structures of Al18Ti Aluminum Clusters and Their Catalytic Activity toward the CO Oxidation

Main Article Content

Pham Thi Thanh Hoa1, Ngo Tuan Cuong2,*,
1 Faculty of Chemistry, Hanoi National University of Education - Center for Computational Science, Hanoi National University of Education, Vietnam
2 Faculty of Chemistry, Hanoi National University of Education—Center for Computational Science, Hanoi National University of Education, Vietnam

Abstract

The B3LYP functional in conjunction with 6-311+G(d) basis set was employed to optimize geometrical structures, followed by frequency calculations of the Al19+ and Al18Ti clusters, converging to the double icosahedron structure, and the Ti places at the top apex of the double icosahedron in the case of Al18Ti cluster. The changes in the electron structure of the clusters have been determined; accordingly, there is energy level splitting of the 1P, 1D, 1F, 2P, and 2D shell orbitals and the appearance of 3d orbitals of the Ti in the electron configurations. The catalytic ability of the Al18Ti cluster for the CO and O2 reaction has been investigated initially; thus, the Ti atom plays a central role in binding to CO and O2, weakening both the O=O and C≡O bonds and facilitating the formation of CO2

Downloads

Download data is not yet available.

Article Details

How to Cite
Pham, T. T. H., & Ngo, T. C. (2024). Density Functional Theory Study of Geometrical and Electron Structures of Al18Ti Aluminum Clusters and Their Catalytic Activity toward the CO Oxidation. The University of Phan Thiet Journal of Science, 2(5), 64-80. https://tapchikhoahocupt.vn/index.php/uptjs/article/view/39
Section
Articles

References

Baletto, F., & Ferrando, R. (2005). Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Reviews of Modern Physics, 77(371), p. 5156.

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, p. 5648.

Charkin, O. P., Charkin, D. O., Klimenko, N. M., & Mebel, A. M. (2002). A theoretical study of isomerism in doped aluminum XAl12 clusters (X = B, Al, Ga, C, Si, Ge) with 40 valence electrons. Chemical Physics Letters, 365, p. 494.

Chen, M., Zhang, L., & Wu, X. (2021). Electronic structure and properties of aluminum clusters: A computational study. Computational Materials Science, 182, p. 109763.

Chuang, F. C., Wang, C., & Ho, K. (2006). Structure of neutral aluminum clusters Aln (2⩽n⩽23): Genetic algorithm tight-binding calculations. Physical Review B, 73, p. 125431.

Esquivel, J., & Gupta, R. K. (2017). Corrosion behavior and hardness of Al–M (M: Mo, Si, Ti, Cr) alloys. Acta Metallurgica Sinica, 30, p. 333.

Fan, B., Ge, G. X., Jiang, C. H., Wang, G. H., & Wan, J. G. (2017). Structure and magnetic properties of icosahedral Pdx Ag13−x (x = 0–13) clusters. Scientific Reports, 7 (1).

Frisch, M. J., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R. & Montgomery, J. A. (2009). Gaussian 09 Revision: D.01.

Ge, G. X., Han, Y., Wan, J. G., Zhao, J. J., & Wang, G. H. (2013). The role of TM’s (M’s) d valence electrons in TM@X12 and M@X12 clusters. Journal of Chemical Physics, 139, p. 174309.

Hohenberg, P. & Kohn, W. (1964). Inhomogeneous Electron Gas, Phys. Rev. B, 136, 864. 79 The University of Phan Thiet Journal of Science (UPTJS) - Vol.2, Issue 5 December 2024. ISSN: 3030-444X (17 pages)

Jia, J., Wang, J. Z., Liu, X., Xue, Q. K., Li, Z. Q., Kawazoe, Y., & Zhang, S. B. (2002). Artificial nanocluster crystal: Lattice of identical Al clusters. Applied Physics Letters, 80, p. 3186.

Knickelbein, M. B. (2001). Experimental observation of superparamagnetism in manganese clusters. Physical Review Letters, 86, p. 5255.

Li, H. F., Kuang, X. Y., & Wang, H. Q. (2011). Probing the structural and electronic properties of lanthanide-metal-doped silicon clusters: M@Si6 (M = Pr, Gd, Ho). Physics Letters A, 375, p. 2836.

Li, X., Kuznetsov, A. E., Zhang, H. F., Boldyrev, A. I., & Wang, L. S. (2001). Observation of all-metal aromatic molecules. Science, 291, p. 859.

Li, X., Zhang, H., Wang, L., Kuznetsov, A. E., Cannon, N. A., & Boldyrev, A. I. (2001). Experimental and theoretical observations of aromaticity in heterocyclic XAl3 − (X = Si, Ge, Sn, Pb) systems. Angewandte Chemie, 113, p. 1919.

Li, Y., Tam, N. M., Woodham, A. P., Lyon, J. T., Li, Z., Lievens, P., Fielicke, A., Nguyen, M. T., & Janssens, E. (2016). Structural evolution and electronic properties of CoSin − (n = 3-12) clusters: Mass-selected anion photoelectron spectroscopy and quantum chemistry calculations. Journal of Physical Chemistry C, 120, p. 19454.

McLean, A. D. & Chandler, G. S. (1980). Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18, J. Chem. Phys., 72, p.p. 5639-48.

Nguyen Minh Tam, Long Van Duong, Ngo Tuan Cuong, & Minh Tho Nguyen (2019). Structure, stability, absorption spectra and aromaticity of the singly and doubly silicon doped aluminum clusters Aln Sim 0/+ with n = 3-16 and m = 1, 2†. RSC Adv., 9, p. 27208.

Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple, Phys. Rev. Lett., 77, p. 3865.

Raghavachari, K., Binkley, J. S., Seeger, R. & Pople, J. A. (1980). Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions, J. Chem. Phys., 72, p.p. 650-54.

Rao, B. K., & Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. Journal of Chemical Physics, 111, p. 1890.

Reinhard, P. G., & Suraud, E. (2004). Introduction to Cluster Dynamics. Wiley-VCH.

Roach, P. J., Woodward, W. H., Castleman, A. W., Reber, A. C., & Khanna, S. N. (2009). Active sites, spin, and reactivity of clusters. Science, 323, p. 492.

Sengupta, T., Das, S., & Pal, S. (2016). Transition metal doped aluminum clusters: An account of spin. Journal of Physical Chemistry C, 120, p. 10027.

Wang, M., Huang, X., Du, Z., & Li, Y. (2009). Structural, electronic, and magnetic properties of a series of aluminum clusters doped with various transition metals. Chemical Physics Letters, 480, p. 258.

Wang, Y., & Li, Y. (2020). Computational studies on the electronic structure of aluminum clusters with various dopants. Journal of Molecular Modeling, 26, p. 50.

Varano, A., Henry, D. J., & Yarovsky, I. (2010). Theoretical study of the geometries and dissociation energies of molecular water on neutral aluminum clusters Aln (n = 2–25). Journal of Physical Chemistry A, 114, p. 3602.

Wang, H. Q., Kuang, X. Y., & Li, H. F. (2010). Density functional study of structural and electronic properties of bimetallic copper–gold clusters: Comparison with pure and doped gold clusters. Physical Chemistry Chemical Physics, 12, p. 5156.

Yang, J. M., Zhao, T., Ge, G. X., & Zhang, X. (2016). Manipulation of magnetic anisotropy in Irn+1 clusters by Co atom. Physica A: Statistical Mechanics and its Applications, 453, p. 194.

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 > >>