Tối ưu hóa hệ thống điểm danh sinh viên sử dụng công nghệ nhận dạng khuôn mặt
Nội dung chính của bài viết
Tóm tắt
Dựa vào nhu cầu chuyển đổi số hiện nay trong nhà trường thì hệ thống nhận dạng khuôn mặt để điểm danh sinh viên một cách tự động đóng vai trò quan trọng. Hệ thống này ghi nhận sự hiện diện, thời gian vào và thời gian ra của sinh viên nhằm thay thế cho việc điểm danh thủ công như hiện tại. Trong bài báo này, nhóm tác giả nghiên cứu việc phát hiện và nhận dạng khuôn mặt được thực hiện bằng mô hình FaceNet kết hợp MTCNN (Multi-task Cascaded Convolutional Networks hay Mạng thần kinh tích chập đa nhiệm), hàm Triplet loss, kỹ thuật cải thiện hình ảnh GANs và sử dụng các thư viện trong ngôn ngữ lập trình Python và CSS. Nhóm nghiên cứu đã xây dựng được hệ thống điểm danh từ cơ sở dữ liệu hình ảnh của sinh viên, giúp cho giảng viên không còn mất thời gian để điểm danh và rất thuận tiện trong việc theo dõi, thống kê chuyên cần của từng sinh viên trong suốt quá trình học tập tại trường.
Lượt tải xuống
Chi tiết bài viết
Tài liệu tham khảo
Anitha, G., Devi, P. S., Sri, J. V., & Priyanka, D. (2020). Face Recognition Based Attendance System Using Mtcnn and Facenet. Zeichen, pp. 189-195.
Arjun Raj, A., Shoheb, M., Arvind, K. & Chethan, K. S. (2020). Face Recognition Based Smart Attendance System, International Conference on Intelligent Engineering and Management (ICIEM), pp. 354-355. DOI: 10.1109/ICIEM48762.2020.9160184
Đoàn Hồng Quang, Lê Hồng Minh & Thái Doãn Nguyên (2020). Nhận dạng khuôn mặt trong video bằng mạng nơ ron tích chập = Face recognition in video using convolutional neural network. Tạp chí Khoa học Công nghệ Việt Nam, 1, tr.8 - 12. Truy cập từ http://thuvienlamdong.org.vn:81/handle/DL_134679/28822
Sandberg, D. (2017). Face recognition using Tensorflow. GitHub. Truy cập từ https://github.com/davidsandberg/facenet
Edwin, J. , Greeshma, M., Mithun, H. T. P. & Supriya, M. H. (1019). Face Recognition based Surveillance System Using FaceNet and MTCNN on Jetson TX2. Truy cập từ https://www.researchgate.net/publication/333660229_Face_Recognition_based_Surveillance_System_Using_FaceNet_and_MTCNN_on_Jetson_TX2
Hao Yang & Xiaofeng Han (2020). Face Recognition Attendance System Based on Real-Time Video Processing, IEEE Access, 8, tr.. 159143- 159150. DOI: 10.1109/ACCESS.2020.3007205
Indra, E. (2020). Design and Implementation of Student Attendance System Based on Face Recognition by Haar Like Features Methods. International Conference on Mechanical, Electronics, Computer, and Industrial Technology (MECnIT), tr. 336342, DOI. 10.1109/MECnIT48290.2020.9166595.
Lê Thị Thu Nga, Nguyễn Văn Châu & Nguyễn Xuân Pha (2020). Điểm danh tự động dựa trên mô hình mạng Nơ-Ron tích chập xếp tầng đa nhiệm và kỹ thuật Triplet Loss. Truy cập từ https://elib.vku.udn.vn/bitstream/123456789/764/1/B31.219-226.pdf
Ming, Z., Chazalon, J., Luqman, M. M., Visani, M., & Burie, J. C. (2017). Simple triplet loss based on intra/inter-class metric learning for face verification. International Conference on Computer Vision Workshops (ICCVW), tr.1656-1664. DOI. 10.1109/ICCVW.2017.194
Patil, V., Narayan, A., Ausekar, V. & Dinesh, A. (2020). Automatic students attendance marking system using image processing and machine learning. International Conference on Smart Electronics and Communication (ICOSEC), tr. 542-546. DOI: 10.1109/ICOSEC49089.2020.9215305
Sahu, M. & Dash, R. (2020). Study on Face Recognition Techniques. International Conference on Communication and Signal Processing (ICCSP), tr. 0613-0616, DOI. 10.1109/ICCSP48568.2020.9182358.
Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition. DOI. 10.1109/CVPR.2015.7298682
Shamila1, M., Bhanu, P., Asrar, A., Poshak, P. & Ruby, P. (2023). Smart Attendance Autiomation System, Department of CSE (AIML), GRIET, Hyderabad, India Uttaranchal Institute of Technology, Uttaranchal University. DOI: 10.1051/e3sconf/202343001019
Shubhobrata Bhattacharya, Gowtham Sandeep Nainala, Prosenjit Das & Aurobinda Routray (2018). Smart Attendance Monitoring System (SAMS): A Face Recognition based Attendance System for Classroom Environment. IEEE 18th International Conference on Advanced Learning Technologies.
Shubhobrata, B., Gowtham, S. N., Prosenjit, D. & Aurobinda, R. (2018). Smart Attendance Monitoring System (SAMS): A Face Recognition based Attendance System for Classroom Environment, IEEE 18th International Conference on Advanced Learning Technologies, tr. 358-360. DOI. 10.1109/ICALT.2018.00090
Smitha, Hegde, Pavithra & Afshin (2020). Face Recognition based Attendance Management System, International Journal of Engineering Research & Technology (IJERT), 9, tr. 1190-1192. DOI:10.17577/IJERTV9IS050861
Weinberger, K.A., Blitzer, J. A., & Saul, L. (2006). Distance metric learning for large margin nearest neighbor classification. In Advances in Neural Information Processing Systems. MIT Press. Truy cập từ https://www.researchgate.net/publication/210341989_Distance_Metric_Learning_for_Large_Margin_Nearest_Neighbor_Classification/citations
Zeiler, M. D. & Fergus. R. (2014). Visualizing and understanding convolutional networks. Truy cập từ https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53